What Is Wireless or WiFi Spectrum Management? Everything You Should Know!

Posted By :

In an increasingly digital environment, spectrum is a key element for expanding deployment and coverage of telecommunication networks and meets the ever-increasing demand for data-based services.  With the spectrum, Telco’s are well-positioned to support and offer online applications and transform many lives to provide access to health, agriculture, government, and much more.  However, there remains the challenge of the spectrum being a scarce resource and allocation, and of it being highly regulated and expensive.  Going forward, artificial intelligence (AI) will be used in spectrum management.  

Most nations have a regulatory body to oversee spectrum allocation to ensure that this scarce resource gets allotted accordingly. Spectrum refers to the collection of radio frequencies made available for transmission, and this group includes TV signals, radio, GPS, and mobile phone signals. These signals typically travel from their source to a receiver through radiofrequency.  The rising spectrum need has increased with more operators joining the telecom movement. Earlier, it was purely state-owned incumbent operators who used to provide services; with privatization, more private operators and the need for spectrum allocation is a task in itself.

Measuring the spectrum

Measuring the spectrum is essential to understanding and allows us to efficiently use this scarce commodity. They scream and demands for the wireless spectrum are huge considering the emergence of new and diverse technologies across various industries.  Given the higher demand and meager supply of specific spectrum demands, it is imperative to understand the need for the radio frequency spectrum. The spectrum available is finite and must be auctioned to ensure that each participating service provider gets to bid to buy the spectrum.  Each spectrum is allocated based on the service offered; for example, mobile phones operate in a spectrum of 700 MHz-2.6 GHz.

Elements to ensure effective spectrum management comprises:

  • The spectrum defined
  • How spectrum is being used
  • Regulating the use of the spectrum.
  • Who gets to regulate the spectrum and keep in mind national spectrum requirements?
  • Telecom regulatory body – to oversee spectrum auction bids, allocation, and other administration functions

With newer technologies come multiple applications that require a range of spectrum frequency bands.  In the current context, technologies like 5G, High Altitude Platform Systems (HAPS), Non-Geo Stationary (NGSO) satellite systems, Internet of Things (IoT), and Wi-Fi are the key drivers and present the need for spectrum. The Illustrated table below helps to understand how these technologies are driving the spectrum:

Technology Drivers Spectrum needs
5G deployment – fast speed, low latency, more capacity to handle more users due to high bandwidth. 5G networks operate in frequency bands below 6 GHz bands, and have relatively better propagation characteristics, and offer the benefit of a wider coverage area.
HAPS is a technology that can expand access to wireless connectivity. It consists of radio stations located between 20 and 50 km above the earth. Its applications support other terrestrial technologies and help expand connectivity and provide telecom services in rural and remote areas.   HAPS applications use frequency bands in 31-31.3 GHz, 38-39.5 GHz, 47.2-47.5 GHz, and 47.9-48.2 GHz. NGSO  
NGSO satellite systems provide connectivity in the underserved areas, which are not accessible by terrestrial telecommunications infrastructure. NGSO uses frequency bands: 37.5-39.5 GHz and 39.5-42.5 GHz for the space-to-Earth 47.2-50.2 GHz & 50.4-51.4 GHz for Earth-to-space.
Wi-Fi operates in an unlicensed spectrum and can transmit within a wide range of frequencies. Wi-Fi provides connectivity by transmitting information to and from mobile terminals, sensors, and other connected devices. Wi-Fi earlier used 900 MHz, 2.4 GHz, and 5 GHz bands, with newer versions, it operates in the parts of 60 GHz (57-66 GHz) and 6 GHz (5 925-7 125 MHz) bands.  
The use of IoT devices is increasing, and many IoT-connected devices are used for consumer applications, and public applications in smart cities around the world. IoT devices operate in various frequency ranges, both in licensed and unlicensed spectrum bands, and their spectrum requirements depend on the use case-specific to their application.

STL offloading and spectrum management solution:

STL’s industry patented STL’s offloading and spectrum management solution (dWiFi) offers a complete end-to-end Wi-Fi platform developed to handle the broad spectrum of market challenges.  STL carrier-grade dWiFi offers Telcos to be part of their integral heterogeneous network by improving spectral efficiency, and improving their monetization.  The dWiFi is power backed with DevOps, analytics, web-scale, network software (DAWN). The STL WiFi6 platform enables telcos to offer services across industries, improving revenues.

STLs path breaking spectrum management solution features:

  • Smart & intelligent network services
  • Enhanced digital experience for customers
  • Innovation for new revenue channels
  • Reduced time to market
  • Seamless access & authentication
  • Low cost to serve
  • Network agnostic & network neutral functions

To understand in detail STL spectrum management solution  and how it can save costs and increase spectral efficiency, read the brochure or watch the quick demo video.

End Note

Wireless spectrum is highly scarce and regulated, yet the demand increases with the rapid emergence of new and diverse technologies across various industries. Regulators need to consider how impactful the new technologies will shape while considering spectrum allocation.  Besides, the regulator needs to have the necessary framework and ensure spectrum availability before the allocation is made. Promising technologies like 5G will ensure that the spectrum used will be effective as well. On the other end, organizations like STL’s dWiFi and similar solutions need the hour to play an important role in effectively handling the spectrum.

Leave a Reply

Your email address will not be published.